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Abstract. Accurate dynamic modeling is difficult for aerobatic
unmanned aerial vehicles flying at their physical limit, due to the model
uncertainty caused by unobservable hidden states like airflow and vibra-
tions. Although some progresses have been made, these hidden states are
still not properly characterized, rendering system identification problem
for aerobatic unmanned aerial vehicle extremely challenging. To address
this issue, a novel spectrally normalized adaptive neural identifier is pro-
posed for the dynamic modeling of aerobatic unmanned aerial vehicles.
Specifically, to characterize the model uncertainty, we propose a spec-
trally normalized adaptive neural network (SNANet) to extract deep
features representing the hidden states of the system. Particularly, the
proposed SNANet adopts a multi-model adaptive structure, quickly and
dynamically updating the model online. Furthermore, the spectral nor-
malization constraint is introduced into the training process to ensure
the Lipschitz stability of the SNANet. Consequently, a trajectory track-
ing control scheme including the sliding mode controller and SNANet is
presented. The modeling effectiveness of the proposed method is verified
on a real flight dataset. The results demonstrate that our method has
high modeling accuracy, short training time, and fast model response
speed.

Keywords: Spectral normalization · Model uncertainty · Adaptive
neural identifier · Aerobatic unmanned aerial vehicle

1 Introduction

Unmanned aerial vehicles (UAVs) achieve vertical take-off and landing, coordi-
nated steering, and other flight tasks in a small space, due to their high flexi-
bility and strong adaptability, so they have been widely applied in military and
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civil fields. However, accurately modeling aerobatic UAVs remains a challenging
research problem due to the need to capture dynamic couplings such as engine
dynamics, aerodynamics, etc. Dynamic coupling is difficult to model because it
relies on hidden states that are difficult to measure such as airflow and vibration.

The UAV system modeling is well studied. The simple linear model con-
structed by the mechanism modeling method is only suitable for the controller
design of simple trajectory. More complex nonlinear models built by the grey-box
modeling method enable some simple aerobatics [1]. Researches [2] suggest that
the key to aerobatic UAV modeling lies in unobserved state variables. Although
hidden states such as airflow cannot be directly observed, they can be deduced
from measurement sequences of other observable states [2]. Traditional methods
usually regard the identification of hidden states as a parameter learning prob-
lem, but these methods all require prior knowledge and assumptions, which limit
the representation ability of the model.

To model uncertainty caused by hidden states without being overly-
constrained by the aforementioned methods, scholars take deep neural networks
(DNNs) to mine the hidden states. Research [2] regarded the UAV dynamics
modeling as a high-dimensional regression problem and used a fully connected
neural network to learn the system model. In [3], a convolutional neural network
was used to characterize the uncertainty of the helicopter system and based on
this, a backstepping adaptive controller was designed. Research [4] used a tem-
poral convolutional neural network to model the aerodynamics of the UAV and
combined it with first-principles modeling methods to build a system model.

Although these methods have achieved good performance, the following three
issues remain unresolved: 1) It is usually hard to analyze DNNs, making the
analysis of stability with DNN-based controllers difficult; 2) The UAV is dynamic
and online, and the requirement on the speed of DNN is very high; 3) DNN is
high-dimensional and may generate unpredictable outputs, which in turn lead
to instability of the feedback control loop.

To overcome the above issues, we propose a novel spectrally normalized adap-
tive neural identifier for the dynamic modeling of aerobatic UAVs. Specifically,
we propose a SNANet to characterize the model uncertainty caused by hid-
den states. The proposed SNANet adopts a multi-model adaptive structure and
introduces spectral normalization constraints into the training process, which
ensures the fast and dynamic online update capability and the Lipschitz sta-
bility. Then, the model uncertainty described by the SNANet is combined with
the traditional dynamics model to achieve a complete characterization of the
UAV. Finally, using the Lipschitz property of the SNANet, a trajectory tracking
controller is designed and the stability of the system is proved.

The main contributions are summarized as follows.

1) We propose a novel SNANet with a multi-model adaptive structure to char-
acterize the model uncertainty, making the model both a prominent modeling
accuracy and a fast and dynamic online update capability.
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2) We introduce a spectral normalization for the training process of the pro-
posed SNANet, enhancing the Lipschitz stability of the SNANet in a learning-
theoretic sense.

3) Based on the SNANet-based model, we propose a trajectory tracking con-
troller via the sliding mode control method. The Lyapunov theory is adopted
to prove the stability of the control scheme.

2 Problem Formulation

The model of the UAV is given as:

ṙ = v (1)
mv̇ = mg + Rhτ + hd (2)

where r ∈ R
3 represents the position, v ∈ R

3 denotes the airframe velocity, m
and R ∈ SO(3) present respectively the mass and attitude rotation matrix of
the UAV, and hτ = [0, 0, T ]T is the total thrust force. The difficulty of accurate
dynamic modeling of the aerobatic UAV lies in the description of the uncertainty
term hd = [hdx, hdy, hdz]T caused by hidden states like airflow and vibrations.

Our Objectives: 1) Design a DNN-based method to describe the uncertainty
terms hd. Because the UAV system is dynamic and online, the designed DNN
is required to have high identification accuracy, low computational burden, and
fast identification speed; 2) Design a trajectory tracking controller based on the
proposed DNN for validating the effectiveness of the proposed modeling approach
in a control task. As DNNs may produce unpredictable outputs, the proposed
DNN must be analyzable.

3 Spectrally Normalized Adaptive Neural Network

This section proposes a novel SNANet to learn the uncertainty term hd in the
UAV model. First, the structure of SNANet is described in detail. Then, the
adaptive updating rule for convex coefficients is given, and a performance anal-
ysis of convex coefficients of the SNANet is carried out. Finally, the training
method of SNANet constrained by spectral normalization is given.

Network Structure: To fulfil the requirements of the UAV control system, a
SNANet is designed in terms of computational burden, identification accuracy,
and speed. The structure of the SNANet is given in Fig. 1. It uses a multi-
model adaptive structure where m deep feature learning networks (DFNets)
Di(i = 1, 2, · · ·,m) with the same structure are connected by convex coefficients
λi ∈ [0, 1]. The SNANet updates the λi rather than the DFNet weights during
the system online identification process, so the convergence speed of the proposed
SNANet can be greatly improved.

The SNANet satisfies the following three properties: 1) The initial
state of SNANet is equal to the convex combination of all DFNets, i.e.
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Fig. 1. Structure of the proposed SNSNet

∑m
i=1 ϕi(0)Di(0) = D(0); 2) The SNANet needs to meet the criterion for con-

vexity, i.e.
∑m

i=1 λi = 1; 3) The SNANet should converge at the same rate as a
single DFNet.

Considering that the DNN using the ReLU activation function can better
suppress the vanishing gradient problem, DFNet uses this activation function to
learn hd of the system, which can be expressed as:

Di(pi, ϑi) = WL+1
i κ

(
WL

i

(
κ

(
WL−1

i

(· · · κ (
W 1

i pi

) · · · )))) (3)

where pi is the input of the network, ϑi = W 1
i ,W 2

i , · · ·,WL+1
i is the network

weight coefficient, κ is the ReLU activation function.
Adaptive Updating Rules for Convex Coefficients: The output of

SNANet is a convex combination of m DFNets, as follows:

ĥd(t) = λ1(t)ĥd1(t) + · · · + λm(t)ĥdm(t) (4)

The identification error for SNANet is:

e(t) = hd(t) − ĥd(t) (5)

Combining the Eq. (4)–(5) and the criterion for convexity:

e(t) = hd(t) −
(
λ1(t)ĥd1(t) + · · · + λm(t)ĥdm(t)

)

=
m−1∑

i=1

λi(t)ẽi(t) + em(t)
(6)

where ei(t) = ĥdi(t)−hd(t) and ẽi(t) � ei(t)−em(t). The Eq. (6) can be further
rewritten as:

ẽ(t) = G̃T (t)λ̃(t) (7)

where, G̃(t) = [ẽ1(t), · · ·, ẽm−1(t)] ∈ R
m−1, λ̃(t) = [λ1(t), · · ·, λm−1(k)] ∈ R

m−1.
The adaptive updating rule for the convex coefficients can be designed as

follows:

λ̃(t) = G̃ẽ(t − 1) − G̃G̃T λ̃(t − 1) + λ̃(t − 1) (8)
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So, the system identification error can be described as a convex combination of
the modeling errors of each DFNet, which can be expressed as follows:

e =
m∑

i=1

λiDi − hd =
m∑

i=1

λiei (9)

Training Under Spectral Normalization Constraints: To obtain a
stable SNANet, the optimization objectiveness is to minimize the prediction
error subject to a constrained Lipschitz constant, which can be mathematically
described as:

minimize
ϑ

T∑

t=1

1
T

‖h∗
d − D(p, ϑ)‖2

subject to ‖D‖Lip ≤ δ

(10)

where, h∗
d is the actual uncertainty of the UAV and p is the observed state, and

ϑ is the parameter to be learned. Research [5] suggests that training a SNANet
with the bounded Lipschitz constants is a hallmark of machine learning stability.

4 Trajectory Tracking Control Based on SNANet

Trajectory Tracking Controller: To design the controller, the following com-
posite variables are introduced:

c = ˙̃r + Γ r̃. (11)

where, r̃ = r−re, Γ is a diagonal or positive definite matrix. Then the controller
needs to be designed such that r̃(t) converges exponentially to 0 on the manifold
determined by c = 0. Let vd = ṙe − Γ r̃, Eq. (11) can be rewritten as:

c = ṙ − vd (12)

where, vd denotes the reference velocity. Using the method proposed in Sect. 3,
ĥd(p) is used to approximate the model uncertainty hd and p is the input to the
SNANet. The desired total thrust force he is defined as follows:

he = (Rhτ )e = h̄e − ĥd (13)

where h̄e = mv̇d − Avc − mg. Substituting Eq. (13) into Eq. (2):

mċ + Avc = ε (14)

where, ε = hd − ĥd. Thus, r̃(t) → 0 is bounded by global and exponential error
as long as ‖ε‖ is bounded.

Stability Analysis: The stability analysis is given as following.
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Theorem 1. Given a time-varying re(t), using the designed controller (13) that
satisfies λmin(Av) > Ldα ensures that the error of the composite variable c
converges exponentially to limt→∞ ‖c(t)‖ = εm (λmin (Av) − Ldα) at a rate of
(λmin(Av) − Ldα)/m, and r̃ exponentially converges, i.e.

lim
t→∞ ‖r̃(t)‖ =

εm

λmin(Γ ) (λmin (Av) − Ldα)
(15)

Proof. We choose the Lyapunov function as follows:

V (c) =
1
2
m‖c‖2 (16)

By involving the designed controller (13) and universal approximation theorem,
we obtain:

V̇ = cT
(
−Avc + hd − ĥd

)
≤ −cTAvc + ‖c‖2εm (17)

where εm is the upper bound on the learning error of ĥd. Let λmin(Av) denote
the smallest eigenvalue of the positive definite matrix Av. Using the Lipschitz
property of ĥd obtains:

V̇ =

√
2V

M
εm − 2(λ − Ldα)

m
V (18)

According to the comparison lemma, we have

‖c(t)‖ ≤ ‖c(t0)‖exp
(

−λ − Ldα

m
(t − t0)

)

+
εm

λ − Ldα
(19)

The results demonstrate finite-gain Lp stability and input state stability. Fur-
ther, the graded combination of s and r̃ in Eq. (12) makes limt→∞ ‖r̃(t)‖ =
limt→∞ ‖c(t)‖/λmin(Γ ), yielding (15).

5 Simulation Experiments

This section introduces the experimental settings and gives the related exper-
imental results analysis, specifically: the training optimization method of the
network, the introduction of comparison methods, model uncertainty character-
ization performance, and the performance of the proposed trajectory tracking
control method.

5.1 Experimental Setup

Network Optimization: The flight dataset is from the Stanford Unmanned
Aerial Vehicle Group, which employs professional pilots to control UAV to
repeatedly complete 20 types of advanced aerobatic maneuvers, and to collect
related flight data. The trajectories are recorded with a sampling interval of
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Table 1. Identification errors for model uncertainty

RBF Deep ReLU GRU SNANet

RMSE 2.12 0.72 0.59 0.46

0 0.2 0.4 0.6 0.8 1
time(s)

-15

-10

-5

0

5

10

h d

Actual uncertainties
Characterized by SNANet

Fig. 2. Identification of model uncertainty by the proposed SNANet

0.01s. We randomly select 60%, 20%, and 20% data of as training, testing and
validation sets, respectively. To prevent the results of a single test from being too
one-sided, an 8-fold cross-validation experiment is adopted. The initial learning
rate of SNANet is 0.001, the minimum learning rate is 10−6, and the dropout
size is 0.05. The learning rate decreases when the loss function is not improved
for 10 consecutive epoch validation sets.

Comparison Methods: To fully prove the validity of the SNANet, we
choose the RBF approach [6], the deep ReLU approach [7], and the GRU app-
roach [8] for comparison. The RBF approach is one of the most widely used and
effective traditional neural networks (NNs). The deep ReLU approach is the first
DNN applied in the field of UAV system identification. The reason for choosing
the GRU approach for comparison is that the most relevant DNNs for system
identification are recurrent neural networks and their extensions, and GRU app-
roach is a new type of these networks. To verify the performance of the proposed
controller based on the SNANet, we choose the method [9] for comparison.

5.2 Performance

Higher Identification Accuracy: The uncertainty identification errors of the
SNANet and the three comparison methods are shown in Table 1. Obviously,
the uncertainty identification error of the proposed SNANet is the smallest.
Compared with the three comparison methods, the uncertainty identification
error is reduced by 78.30%, 36.11%, and 22.03% respectively. This is mainly
because the RBF neural network only has the ability of simple nonlinear fitting,
but can not mine the hidden states of the system. This is because SNANet is
able to extract deep spatiotemporal features representing the hidden states and
intrinsic laws of the system, so it has better uncertainty fitting ability.
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Table 2. Time consumption comparison of different methods

RBF Deep ReLU GRU SNANet

Training time (min) 22.93 10.63 11.07 3.96

Predicting time (ms) 1.57 0.86 1.07 0.45

(a)

0 5 10 15 20 25 30
time(s)

-1
0
1

x e

0 5 10 15 20 25 30
time(s)

-1
0
1

y e
0 5 10 15 20 25 30

time(s)

-1
0
1

z e

(b)

Fig. 3. Circular trajectory tracking: (a) Dynamic trajectory; (b) Position error

Meanwhile, to more vividly demonstrate the model uncertainty identification
ability of SNANet, Fig. 2 shows the identification results of model uncertainty
by SNANet. As we can see, SNANet is able to accurately identify the model
uncertainty if it changes drastically due to airflow, vibration, etc. The above
experimental results fully prove that the SNANet has higher identification accu-
racy.

Faster Convergence Rate and Prediction Speed: Table 2 presents the
comparison results of the training time and single prediction time. It is obvi-
ous that SNANet not only has the fastest convergence speed but also has the
shortest single prediction time. Compared with the three comparison methods,
the training time of SNANet is reduced by 85.55%, 63.69%, and 65.13% respec-
tively, and the single prediction time is reduced by 71.34%, 47.67% and 57.94%
respectively. This is because SNANet adopts a multi-model adaptive architec-
ture. When the SNANet is applied online, it is not the network weights but the
convex coefficients that are updated. The above results fully demonstrate that
the proposed SNANet has faster convergence and prediction speed.

Better Trajectory Tracking Performance: The performance of the pre-
sented method was demonstrated through circular and switched trajectory track-
ing. Firstly, the circular tracking trajectory results of the proposed controller and
the comparison method [9] are presented in Fig. 3(a). It presents that our method
can still track the desired trajectory well with large model uncertainties, while
the comparison method has a large error. To better show the control precision of
our method, the tracking error of our method is given in Fig. 3(b). Our method
can make the error converge to an arbitrarily small range of the origin.
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(a)
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Fig. 4. Switched trajectory tracking: (a) Dynamic trajectory; (b) Position error

Furthermore, to validate the control performance of our method, we add
uncertainty never used in training during trajectory tracking, and switch the
expected trajectory type abruptly. The expected trajectory is a sin curve from 0 s
to 20 s and suddenly switches to a straight line at 20 s. As presented in Fig. 4(a),
the proposed method has better tracking performance, while the comparison
method not only has a large tracking error but also cannot efficiently track
the desired trajectory with sudden changes. Then, the position error during the
trajectory switching tracking is presented in Fig. 4(b). The error of our controller
can converge to an arbitrarily small range of the origin.

6 Conclusion

This paper proposes a novel spectrally normalized adaptive neural identifier
for dynamic modeling and trajectory tracking of aerobatic UAVs. Firstly, to
characterize model uncertainty, a novel SNANet is proposed. Due to the multi-
model adaptive structure of the SNANet, it has a fast training speed and model
response speed, which can meet the requirements of the UAV system dynamic
online. Due to the superior hidden feature mining ability of the SNANet, it
has a high accuracy of model uncertainty. Due to the spectral normalization
constraint used in the training process, it has the Lipschitz property, which makes
SNANet available for theoretical analysis. Furthermore, a complete system model
is constructed by combining SNANet with the traditional UAV dynamics model.
Finally, based on this model, the trajectory tracking controller of the UAV is
designed, and the stability of the system is analyzed.
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